
University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

OVER THE TOP COUNTER EXAMPLE

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

Statement of the problem:

Referring to the diagram above, construct a counter that counts

through the hexadecimal sequence as specified above. The counter must

have an active low asynchronous RESET switch that returns it to the

starting number specified. The counter must also have an active high

pause switch P that, when true, holds the counter at whichever value

it is currently at. All of the outputs used to display the numbers

must be active high. You must use a JKFF for the MSB, a DFF for the

LSB, and TFFs for any other bits you may need for the count sequence.

Use an SPDT switch with the debounce circuit constructed in Quartus

for the CLK signal and an SPST switch for the other two required

inputs. Use an LED DIP package to display the hexadecimal values as

outputs.

Breaking the problem down:

The counter designed in this example will count the sequence (in

hexadecimal):

53, 43, 48, 57, 41, 52, 54, 5A (then repeats)…

This counter will have an asynchronous active low reset called “RESET”

that will immediately return the count to the first number (53). This

counter will also have an active high pause feature “P” that, when

true, will pause the sequence at whichever count value it was last at.

These two switches will be made by means of an accompanying switch

circuit using an SPST switch. This counter will make use of a JKFF for

the MSB (most significant bit), a DFF for the LSB (least significant

bit), and a TFF for any other bits that may be needed. All of the

output bits will be active high and will be constructed with an LED

circuit using an LED DIP package.

Though this is a counter example, it does provide some knowledge on

how to construct ASMs (arithmetic state machines). If you are

unfamiliar with this, don’t worry about it for now, it will be covered

in future lectures. If you do, then this may help with your

understanding of them as we will be defining “states” for each number.

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

In the following pages, a solution to this counter will be laid out

and an accompanying Quartus Archive File with this design and

simulation will be provided.

This counter is MUCH BIGGER than anything you will ever have to do for

labs, exams, or HW. The purpose of this demonstration is to show you

that all counters can be constructed exactly the same way, no matter

how big, which flip flops are chosen, or what the output values need

to be. If you can design and construct this counter all by yourself,

then you can tackle any counter that this class may throw at you.

Good luck on your labs, exams, and this counter! Without further ado,

let’s get started.

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

Part 1: Next State Truth Table

The FIRST step of ANY counter design is the construction of the Next

State Truth Table. I CANNOT stress enough how important this table is

for the counter. Once you have this made, then the whole rest of the

counter will fall into place. Double and triple check your table after

you have finished making it. If it ends up being wrong, then it’s much

easier to fix right when you make it than later on when you have to

redo much more work.

Generally, you should put all your inputs on the left side and all

your outputs on the right. One problem that we must first figure out

is how many flips flops we’ll need.

Given 2n states (aka numbers you want to display), you will need n flip

flops. What does this mean? Let’s say you have 2 FFs, then the maximum

number of states you can have with these 2 FFs is 22 or 4 states. This

is the MAXIMUM number of states (numbers we want to display) that we

can handle. Similarly, if you had 4 FFs, you could make a counter that

has 24 = 16 states. But what if you have a number that’s not a power of

2, say 5? Well, if you wanted to make a counter that has 5 different

numbers (aka states), then you couldn’t use just 2 FFs because that

can only handle up to 4 states, so you must use 3 FFs since doing so

can handle up to 8 = 23 states.

Back to the problem. Since we have 8 different numbers in our

sequence, we have 8 different states we’ll need. The smallest number

of FFs we could use is thus 23 = 8, so 3. Therefore, we know that we

will need just 3 FFs.

Since the problem specified the kind of FFs we must use, we will use a

JKFF for the high bit, a TFF for the middle bit, and a DFF for the low

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

bit. Though also note that you could use ANY FF if you wanted, this is

just what we will be doing in this problem.

All of our hex numbers have 2 hex characters in them. Since a single

hex character contains 4 bits, then we will need 8 bits to represent

the output sequence for each number. I will denote the output bits

using Y’s and since we have 8 bits, we need 8 lines for outputs. So,

the Next State Truth Table must have columns for the output lines

Y7…Y0.

When it’s time to make the table, group the inputs together on the

left side and count through the sequence of possible input values in

COUNTING ORDER. This will make it MUCH easier for you later on to

debug as well as construct the K-maps that will be required for the

various outputs. On the diagram given above, it is helpful to write

the state numbers next to the number you want to output for that

state. This sounds confusing but it is very simple. Look at the copy

of the counter below, now with the states labeled in red:

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

So here I called the output number “53” state 000, the output number

“43” state 001 and so on. You can technically use any number you want

for the given states, but it is usually much easier to just use the

numbers 000, 001, 010 and so on. Now that the states have been given

values, we know how many and which FFs to use, as well as how many

outputs we need, it’s time to make the table!

The Q2Q1Q0 represent the current state and Q2+Q1+Q0+ represent the next

state. The way you construct these tables is to first make the 4

columns on the left with all the inputs and just make the counting

order sequence, then go through each row and determine what the next

state must be. For the first row, since P=0, we are not pausing and

thus state 000 will always go to state 001. Then row 2, P=0, so we are

Next State Truth Table

P Q2 Q1 Q0 Q2+ Q1+ Q0+ J2K2 T1 D0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 1 0 X 0 1 0 1 0 1 0 0 1 1

0 0 0 1 0 1 0 0 X 1 0 0 1 0 0 0 0 1 1

0 0 1 0 0 1 1 0 X 0 1 0 1 0 0 1 0 0 0

0 0 1 1 1 0 0 1 X 1 0 0 1 0 1 0 1 1 1

0 1 0 0 1 0 1 X 0 0 1 0 1 0 0 0 0 0 1

0 1 0 1 1 1 0 X 0 1 0 0 1 0 1 0 0 1 0

0 1 1 0 1 1 1 X 0 0 1 0 1 0 1 0 1 0 0

0 1 1 1 0 0 0 X 1 1 0 0 1 0 1 1 0 1 0

1 0 0 0 0 0 0 0 X 0 0 0 1 0 1 0 0 1 1

1 0 0 1 0 0 1 0 X 0 1 0 1 0 0 0 0 1 1

1 0 1 0 0 1 0 0 X 0 0 0 1 0 0 1 0 0 0

1 0 1 1 0 1 1 0 X 0 1 0 1 0 1 0 1 1 1

1 1 0 0 1 0 0 X 0 0 0 0 1 0 0 0 0 0 1

1 1 0 1 1 0 1 X 0 0 1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 X 0 0 0 0 1 0 1 0 1 0 0

1 1 1 1 1 1 1 X 0 0 1 0 1 0 1 1 0 1 0

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

not pausing and state 001 will always go to state 010, and so on for

the rest of the rows. When you get to the rows with P=1, the next

state will simply be the current state since we want to pause the

sequence. Therefore, you can just copy and paste the values over to

the next state columns since they will be exactly the same numbers.

Now we need to fill in the values for the various FF columns. The only

way to do this is to know the excitation tables for the various FFs

which I will now show below:

DFF Excitation Table TFF Excitation Table JKFF Excitation Table

Q Q+ D Q Q+ T Q Q+ J K

0 0 0 0 0 0 0 0 0 X

0 1 1 0 1 1 0 1 1 X

1 0 0 1 0 1 1 0 X 1

1 1 1 1 1 0 1 1 X 0

Using these tables, we can fill out the columns for all the different

FFs by looking at each state and then filling in the corresponding FF

column value based on what the Q bits are. DFFs are the easiest since

we can literally just copy and paste the Q0+ to the D0 column.

TFFs are also easy. The way to remember them is the fact that T stands

for “toggle” meaning it toggles one state to the next. If you look at

the excitation table, when the Q value changes from Q to Q+, i.e. went

from 0 to 1 or 1 to 0, then the T column has a 1, i.e. it toggled. If

you go from Q to Q+ and it stayed as 0 or stayed as 1, i.e. it DID NOT

toggle, then the T column just has a 0.

The JKFF table is a bit trickier and may just be memorized. If you

would like to gain more intuition on it, it is helpful to search up

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

how the table is derived. It is not required for this class to know

exactly how the inner workings of the FFs work but doing so may give

you a better understanding as to why these tables are what they are. I

encourage you to do some self-study on the topic. Start by searching

up some YouTube videos. (That’s how I learned it!)

Now that all the FF columns are filled in, all that is left is to fill

in the columns for the Y output bits.

Referring back to the diagram that we annotated earlier with the state

numbers in red, we can now correspond the specific states to the hex

number we want to output. So, for state 000, we want to output hex 53

which is 0101 0011 in binary. Therefore, in the columns labeled Y7..Y0,

we put in 01010011. We do the same procedure for every state until the

whole rest of the table is filled out.

NOTE: The Q+’s are NEVER used as inputs to a FF or any of the equations

we will soon make. The ONLY purpose of including the Q+’s (the next

state columns) in the table is to be able to fill in the columns for

the FFs. Once again, this is their ONLY purpose. Once you have the

columns for the various FFs filled out, you can pretty much ignore

them, except if you need them for debugging of course.

Part 2: The Combinational Logic

Next, we need to make all the equations for the FF inputs and the Y

outputs. I will assume you know how to construct K-maps so I will not

go into detail about how you get simplified equations using them, but

I will include the filled out K-maps that I used to solve this problem

for you to reference.

The best way to save time in counter problems when making equations is

to try to avoid having to use K-maps and only use them if absolutely

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

necessary. For example, if you look at the columns for Y7, Y6, and Y5,

you can see that they are all just 1’s or all just 0’s. Meaning that

the equations for them are the easiest possible. So Y7=0, Y6=1, and

Y5=0.

You can also avoid K-maps with the J and K columns as well. By

scanning the columns, you can see that there is only a single 1 in

each, meaning that if we just try and find the SOP equation for each,

we will then have the MSOP equation since it is just a single term!

This is why JKFFs are so powerful, they have MANY don’t cares (X’s),

that allow us to choose what we want them to be. Here we made them all

0’s since we wanted the single “1” value to make our MSOP equations.

If this is confusing, try to make the equations for J and K using SOP

and you’ll see why it’s simple.

The rest are not super easy to see just from looking at the various

input columns so K-maps will have to be constructed for those. A

general rule of thumb for making your counter equations is to first

check and see if it is easy to find the various equations required

just by sight and reasoning so you can avoid having to make the K-maps

if possible.

Below, I have provided the filled out K-maps as well as the various

simplified equations for all the different FF inputs and Y outputs.

Note I did not include a K-map for the “T” bit for the TFF. This is

because I was able to find it from the Next State Truth Table without

having to make an equation. Can you figure out how? (Hint: Look at the

equation for T and try to see how it relates to the columns of the

table!)

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

K-Maps for Next State Truth Table Equations:

𝐽 = �̅�𝑄2
̅̅̅̅ 𝑄1𝑄0 𝐾 = �̅�𝑄2𝑄1𝑄0 𝑇 = 𝑄0�̅� 𝐷 = 𝑃𝑄0 + �̅� 𝑄0

̅̅̅̅

𝑌7 = 0 𝑌6 = 1 𝑌5 = 0 𝑌4 = 𝑄2
̅̅̅̅ 𝑄1

̅̅ ̅ 𝑄0
̅̅̅̅ + 𝑄2𝑄0 + 𝑄2𝑄1 + 𝑄1𝑄0

𝑌3 = 𝑄2𝑄1𝑄0 + 𝑄2
̅̅̅̅ 𝑄1𝑄0

̅̅̅̅ 𝑌2 = 𝑄2
̅̅̅̅ 𝑄1𝑄0 + 𝑄2𝑄1𝑄0

̅̅̅̅

𝑌1 = 𝑄2
̅̅̅̅ 𝑄1

̅̅ ̅ + 𝑄0 𝑌0 = 𝑄1
̅̅ ̅ 𝑄0

̅̅̅̅ + 𝑄2
̅̅̅̅ 𝑄0

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

Part 3 Building it in Quartus:

Now that you have your NSTT done and all your equations made, all the

hard parts are done. Pat yourself on the back. The rest is just

building it in Quartus, simulating to make sure it works, and finally

building in on the breadboard.

A screenshot of the Quartus .bdf I made for this design is shown

below. Once again, you have access to the archive file of this project

so you can mess around with it and simulate it yourself if you’d like.

This bdf has the required flip flops in the middle, the combinational

logic for all the flip flops on the left side and the combinational

logic for all the outputs on the right.

Note that I haven’t included an SR-Latch. This should be included for

the debounce switch since the problem specified to construct the

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

debounce circuit inside of Quartus rather than using an external chip.

So if you do this problem, you will need to make one yourself.

Nothing too complicated is happening in this bdf (compared to the rest

of what we’ve done at least!). You simply just have to implement all

the equations you made, create you CLK signal input with your debounce

circuit and then create the appropriate outputs and assign pin

numbers.

If you would like to see the simulation output of this circuit, I

encourage you to download the .qar file and simulate it yourself. A

Waveform.vwf file is already included for you to load. See if you

notice anything special about the output of the count sequence to see

why I chose these specific numbers.

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

Part 4: Constructing it on the Breadboard

All that’s left to do is program the file onto the PLD and construct

the appropriate Switch and LED circuits to display the numbers. Since

the Y outputs are active high, we must make active high LED circuits.

Included below is a picture of the finished build. The 8 leftmost LEDs

are the ones used as outputs. The far left switch on the SPST is the

active low switch used for RESET and the next switch over is used as

the active high pause P.

After going through the sequence a few times and testing the various

inputs, you can determine if the circuit works as specified or not.

Once you get it working, congrats!

University of Florida Created by Blake Shaffer

Electrical & Computer Engineering Dept. Date Created: 28/6/2019

EEL3701C: Digital Logic and Computer Systems

Again, this is an OVER THE TOP counter design. In this class, you will

never have to construct something like this for any exam or lab

exercise. HOWEVER, in doing this whole thing by yourself from scratch,

you will gain insight into building ANY counter circuit you may

encounter in this class. Doing this will give you the skill to

implement any of the 3 types of flipflops we use, work on using K-

maps, creating and programming Quartus files, building switch and LED

circuits, and (unless you’re lucky) practice debugging which will

inevitably make you learn even more.

I hope that this document was instructive on the process of designing

and building a counter circuit and that you feel more confident in

your ability to do something similar. Good luck with the rest of your

time in Digital Logic and onward!

